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Abstract
Within the framework of Bohmian mechanics dwell times find a straightforward
formulation. The computation of associated probabilities and distributions
however needs the explicit knowledge of a relevant sample of trajectories
and therefore implies formidable numerical effort. Here, a trajectory free
formulation for the average transmission and reflection dwell times within static
spatial intervals [a, b] is given for one-dimensional scattering problems. This
formulation reduces the computation time to less than 5% of the computation
time by means of trajectory sampling.

PACS number: 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For a 1D static detector located in the spatial interval [a, b] (see figure 1), the average dwell
time of an ensemble of quantum systems with wavefunction � from time τi up to time τf is
generally agreed to be given by∫ τf

τi

dt

∫ b

a

dξ |�(t, ξ)|2, (1)

cf the reviews [1]1. It is motivated by classical reasoning [2], and it also has been derived
within Bohmian mechanics [3]. In a recent work [4], a corresponding dwell time operator has
been investigated.

Dwell times of the type (1) were associated with interaction times in collision processes
long ago [5]. The relevance of these interaction times to time-resolved scattering experiments
has been studied, e.g., in [6]. Through these works it became clear that differences of average

1 Clearly expression (1) does not exist for bound states.
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Figure 1. Spacetime region G = [a, b] × [τi , τf ].

dwell times formed between a scattering wave packet and its free incoming asymptote are
measurable quantities.

With the introduction of the Larmor clock by Baz [7], dwell time expressions themselves
have got measurable status. The idea is that a small and uniform magnetic field, which is
confined to a small region of space, causes a Larmor precession of the spin-polarization vector
of the scattered wave. It was shown in [8] that the Larmor clock indeed reveals the average
dwell time. If it also is capable of displaying the spectral distribution of some dwell time
operator is still unclear.

The specialization of the Larmor clock to the case of one-dimensional scattering was done
by Rybachenko in [9]. In this work (to the authors knowledge for the first time), a distinction
into the dwell times of the finally transmitted respectively reflected partial waves has been
introduced. For short such selective dwell times will further on be denoted as transmission
and reflection times. Another approach to transmission and reflection times, grounded on a
specific experimental scheme, was introduced by the oscillating barrier model of Büttiker and
Landauer [10]. This model is widely believed to have ignited the tunnelling time controversy
anew. A further extension of the Larmor clock by Büttiker [11] incorporates the effect of spin
alignment with the magnetic field.

More recently the interest in transmission times has been driven on the one hand by the
very indirect time measurement techniques of the condensed matter community, especially
in connection with tunnelling in semiconductor heterostructures or Josephson junctions. On
the other hand, the progress in laser cooling techniques in quantum optics delivers another
valuable tool for future time-resolved scattering experiments.

It is no surprise that the detailed definition of transmission and reflection times depends on
the situation under scrutiny. A systematic operator approach embodying several such possible
definitions was given by Brouard et al [12]. It was shown, however, that transmission and
reflection times derived within the framework of Bohmian mechanics are not included in this
catalogue ([13], chapter 5).

Bohmian mechanics comprises the mathematical concept of worldlines or trajectories
and with this the term ‘particle’ obtains substance in quantum theory again. Thus the notion
of dwell time can be addressed in a straightforward manner, very much like in classical
mechanics. The dwell time of a particle in the spatial interval [a, b] is simply defined as
the duration during which the particle’s trajectory is localized within [a, b]. For an elaborate
discussion of Bohmian mechanics see [14].

As the numerical effort involved with the calculation of Bohmian worldlines is immense,
there have been attempts to compute the Bohmian transmission and reflection times without
the sampling of trajectories. A related one-dimensional bound-state situation has, e.g., been
studied by Stomphorst in [15]. In the present paper, a formulation without trajectories for the
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transmission and reflection times in a genuine scattering situation is presented. The derivation
closely follows ideas developed for the treatment of 1D arrival time in [16]. As an application
the scattering from a double potential barrier, reminiscent of semiconductor heterojunctions
in, e.g., resonant tunnelling diodes, is considered.

2. Bohmian transmission and reflection times in 1D scattering situations

We consider a scattering situation in which the Møller operators �in and �out exist and are
asymptotically complete [17]. �(t, ·) = e−iHt/h̄�inφ0 = �in e−iH0t/h̄φ0 denotes the scattering
solution with incoming asymptote φ(t, ·) = e−iH0t/h̄φ0. The solution φ(t, ·) of the free
Schrödinger equation is chosen to be localized on the negative spatial semi-axis for t → −∞.
That is the case if and only if the Fourier transform F(φ0) is localized on the positive
half-line [18].

The Bohmian transmission time in the above scattering situation is defined as follows.
Let γx(t) denote the Bohmian trajectory which at time t = 0 passes through the point x.
There exists a critical value xc ∈ R, such that limt→∞ γx(t) = −∞ for all x < xc and that
limt→∞ γx(t) = ∞ for all x > xc. Therefore, the Bohmian transmission time is defined as

〈τT 〉 =
∫ ∞

−∞
dx|�(0, x)|2 · �(x − xc)

∫ τf

τi

dtχ[a,b](γx(t)) (2)

with χ[a,b] the characteristic function on the interval [a, b] and � the Heaviside step function.
See, e.g., [19]. Analogously the reflection time 〈τR〉 is defined by replacing the term �(x−xc)

in the right-hand side of equation (2) by �(xc −x). The critical trajectory γxc
(t)

(
γxc

(0) = xc

)
is implicitly defined by

|T |2 =
∫ ∞

γxc (t)

|�(t, ξ)|2 dξ, ∀t ∈ R. (3)

Thereby,

|T |2 := lim
t→∞

∫ ∞

0
|�(t, ξ)|2 dξ (4)

is the transmission probability of the scattering system. The lower limit of the integral in (4)
can equally be replaced by any finite q ∈ R. Accordingly by |R|2 := 1 − |T |2, the reflection
probability is defined. Thus the conditional transmission respectively reflection times, i.e.
transmission and reflection times normalized to the fraction of transmitted respectively
reflected particles of the entire ensemble, are 〈τT 〉c := 1

|T |2 〈τT 〉 and 〈τR〉c := 1
|R|2 〈τR〉.

From the computational viewpoint, the two terms 〈τT 〉 and 〈τR〉 by means of Bohmian
mechanics are achieved in a straightforward manner. One chooses an appropriate sample of
initial values on the configuration space 	0 = R, calculates the corresponding trajectories over
a sufficient range of time, determines the dwell time for each trajectory, labels the trajectories
as transmitted or reflected according to their position at large times and finally calculates,
according to the weight of each trajectory and just as in classical statistics, the average times.
That this programme involves formidable numerical effort is evident.

However, the calculation of Bohmian transmission and reflection times can be reduced to
the computation of current density integrals along the edges at x = a and x = b. The next
proposition represents a generalization of expressions already proposed in [20].

Proposition 1. For 1D scattering solutions �inφt with �(K)φ0 = φ0, ‖φ0‖ = 1, for the
Bohmian transmission and reflection times within [a, b] × [τi, τf ], hold

〈τT 〉 =
∫ τf

τi

dt [min{fa(t), |T |2} − min{fb(t), |T |2}] (5)
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and

〈τR〉 =
∫ τf

τi

dt [max{fa(t), |T |2} − max{fb(t), |T |2}] (6)

with

fq(t) :=
∫ t

−∞
j (s, q) ds.

Here j is the quantum mechanical probability current density.

An essential ingredient for the proof of proposition 1 is the relation

fq(t) :=
∫ t

−∞
j (s, q) ds =

∫ ∞

q

|�(t, ξ)|2 dξ. (7)

It depicts that the probability of finding a particle to the right of q at time t is equal to the amount
of probability, which has passed q up to the time t. A plausibility argument for equation (7)
and a rigorous proof for a limited class of scattering situations is given in appendix A. The
proof of proposition 1 is given in appendix B.

Remark. The formulation of Oriols et al [20] assumes the case in which the current density
at the right edge of the barrier does not change its sign and is positive for all times. In this
case fb(t) � |T |2,∀t ∈ R, because

|T |2 (4)= lim
t→∞

∫ ∞

b

|�(t, ξ)|2 dξ
(7)= lim

t→∞

∫ t

−∞
j (s, b) ds =

∫ ∞

−∞
j (s, b) ds

and further

fb(t) =
∫ t

−∞
j (s, b) ds

j (·,b)�0
�

∫ ∞

−∞
j (s, b) ds = |T |2.

Then equation (5) reduces to

〈τT 〉c = 1

|T |2 〈τT 〉 = 1

|T |2
∫ τf

τi

dt [min{fa(t), |T |2} − fb(t)]

and equation (6) to

〈τR〉c = 1

|R|2 〈τR〉 = 1

|R|2
∫ τf

τi

dt [max{fa(t), |T |2} − |T |2]

which reproduces equations (14) and (15) of [20] for the special choices τi = 0 and τf = ∞.

Obviously an interesting task would be to construct a device, i.e. a clock, which measures the
Bohmian transmission and reflection times. Such a clock should display the respective time,
let us say, through the Bohmian centre of mass position of its hand at the instant of its readout,
which presumably has to be chosen by the experimenter. The combined system’s wavefunction
would be modelled by an appropriate Schrödinger equation, incorporating the interaction
between the micro-system and the clock. There is a self-adjoint operator corresponding to
the hand’s positions. The crucial question is whether this observable’s spectral distribution in
a given state at the instant of its readout coincides with the respective Bohmian transmission
(reflection) time distribution. Probably this is not the case for all states. However, similarly
to the issue of exit time statistics [21], a subspace might be identified on which the Bohmian
distribution coincides with one of the standard quantum mechanical distributions.
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Figure 2. Double potential barrier.
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Figure 3. (a) Evolution of the probability density |�|2. (b) Corresponding sample of 50 Bohmian
trajectories. The double potential barrier is indicated by the hatched area.

3. Numerical example: transmission and reflection at a double
potential barrier structure

As an example for a 1D scattering situation we consider the case of a Gaussian wave packet
impinging on a double potential barrier, i.e. we are looking for solutions � to the Schrödinger
equation

ih̄∂t� =
[
− h̄2

2m
∂2
x + V

]
�

with

V = V0χ[a,b] + V1(χ[a′,a[+χ]b,b′]).

χ[α,β] denotes the characteristic function on the interval [α, β] ∈ R and a′ < a < b < b′ (see
figure 2). The parameter reduction h̄, m, V0 → 1, e.g., is achieved by taking time in units of
h̄

2V0
, space in units of h̄√

2mV0
. V1 is taken in units of V0. In figure 3(a) the evolution of the

probability density |�|2 is given for the case a′ = −6, a = −3, b = 3, b′ = 6 and V1 = 2 in
the chosen units. The mean kinetic energy of the packet is 1.52V0 = 2.25V0. In figure 3(b),
a sample of 50 corresponding Bohmian trajectories is illustrated. The initial distribution of
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Figure 4. Zoom into the region indicated in figure 3(b).
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Figure 5. Current densities j (·, a) (a) and j (·, b) (b) and corresponding integrated current densities
fa(·) (c) and fb(·) (d).

starting points of the trajectories resemble the initial Gaussian distribution of the wave packet.
Figure 4 shows a zoom into the area indicated by the rectangle in figure 3(b).

In figure 4 it becomes clear that, as trajectories change their direction at x = b, the current
density in this case changes its sign also at the right edge of the area in question. Therefore
the restricted formulae of Oriols et al lose their validity and the generalized expressions (5)
and (6) have to be applied.

Figure 5 shows the current densities and corresponding integrated current densities at the
edges x = a and x = b, respectively, as a function of time. In (c) and (d), the transmission
coefficient |T |2 = 38.31% is indicated by the dashed line.
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Figure 6. (a) Transmission times TT (t) (solid line) and corresponding conditional transmission
times (dashed line). (b) Reflection times TR(t) (solid line) and conditional reflection times (dashed
line). (c) Average dwell times TD(t) inside [a, b] × [0, t].

Finally, in figure 6 the mappings TT (s) (a), TR(s) (b) and TD(s) (c) are illustrated, which
give the Bohmian transmission, reflection and overall average dwell times 〈τX〉, X ∈ {T ,R,D}
in [a, b] from time τi = 0 onwards as a function of the upper temporal bound s = τf . In
addition the conditional transmission and reflection times, i.e. normalized to the fraction of
finally transmitted or reflected particles, are indicated in (a) and (b).

Introducing as parameters the potential energy V0 = 0.25 eV (i.e. V1 = 0.5 eV) and the
effective electron mass m∗ = 0.07me typical for GaAs/GaAlAs double barrier heterostructures
(see, e.g., [22]), the temporal units are approximately 1.3 fs, the spatial units approximately
15 Å. Therefore, the width of the model heterostructure in figure 2 is in the range of 200 Å,
which is easily achieved by the ultrathin layers of modern semiconductor devices.

With the aid of formulae (5) and (6) of proposition 1 the computational effort involved
with the calculation of transmission and reflection times was reduced to about 5% of that
corresponding to the computation by means of trajectory sampling.
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Appendix A. Proof of equality (7)

Recall that the scattering solutions under consideration are given by �(t, ·) = �inφ(t, ·),
with φ(t, ·) = e−iH0t/h̄φ0 a solution to the free Schrödinger equation. The Fourier transform
ϕ := F(φ0) is assumed to be localized exclusively on the positive half line, for which reason
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Figure 7. Closed spacetime region.

φ(t, ·) will be further and further localized to the left for large negative times (in the sense of
the L2-norm ‖·‖).

Figure 7 then illustrates, that for the scattering wave packet �, formula (7) is a plausible
conjecture. In the following a rigorous proof will be given for a limited class of scattering
solutions.

For the closed spacetime region in figure 7 integration of the continuity equation assures
that ∫ b

a

|�(τ, ξ)|2 dξ =
∫ τ

τi

j (s, a) ds +
∫ b

a

|�(τi, ξ)|2 dξ︸ ︷︷ ︸
1©

−
∫ τ

τi

j (s, b) ds︸ ︷︷ ︸
2©

.

The aim is to show that the terms 1© and 2© converge towards zero in the limits τi → −∞
and b → ∞, in which case formula (7) applies.

Proposition 2. For every scattering solution � with the above properties, term 1© vanishes
in the limits τi → −∞ and b → ∞, i.e.,

lim
τi→−∞ lim

b→∞
1© = lim

M→∞

∫ M

a

|�(−M, ξ)|2 dξ = 0. (A.1)

Proof. First note that the inequalities

0 �
∫ M

a

|�(−M, ξ)|2 dξ �
∫ ∞

a

|�(−M, ξ)|2 dξ (A.2)

hold. For the given scattering solution with lim
t→−∞ ‖�(t, ·)−φ(t, ·)‖ = 0, according to Dollard

[18], the relation

lim
t→−∞

∫
A

|�(t, ξ)|2 dξ = lim
t→−∞

∫
A

|Ct(φ0)(ξ)|2 dξ

holds for every measurable set A ⊆ R and with

Ct(φ0)(x) :=
( m

ih̄t

)1/2
eimx2/2h̄tϕ

(mx

h̄t

)
.

With this, inequality (A.2) and supp{ϕ} ⊆ R+ one immediately proves (A.1) by

lim
τi→−∞

∫ ∞

a

|�(τi, ξ)|2 dξ = lim
τi→−∞

∫ ∞

a

|Cτi
(φ0)(ξ)|2 dξ

= lim
τi→−∞

∣∣∣∣ m

h̄τi

∣∣∣∣
∫ ∞

a

∣∣∣∣ϕ
(

mξ

h̄τi

)∣∣∣∣2

dξ = lim
τi→−∞

∫ ma
h̄τi

−∞
|ϕ(k)|2 dk

=
∫ 0

−∞
|ϕ(k)|2 dk = 0.

�
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Proposition 3. For a freely evolving wave packet φ(t, ·) = e−iH0t/h̄φ0 with Fourier transform
ϕ := F(φ0), ϕ ∈ C1(R) and supp{ϕ} ⊆ [a1, a2], 0 < a1 < a2 (i.e. ϕ ∈ C1

0(R+)) term 2©
vanishes in the limits τi → −∞ and b → ∞, i.e.,

lim
τi→−∞ lim

b→∞
2© = lim

M→∞

∫ τ

−M

j (s,M) ds = 0. (A.3)

Proof. Equation (A.3) can immediately be shown by a stationary phase argument. In the
following, the parameter reduced notation h̄ = m = 1 will be used.

The solution φ of the free Schrödinger equation can be written in the form

φ(t, x) = F−1(e−iωtF(φ0))(x) = (2π)−1/2
∫

dk ei(kx−ω(k)t)ϕ(k)

with the function ω : R → R, k �→ k2/2 being in C∞(R). The stationary phase argument
then states (cf, e.g., [17], appendix 1 to XI.3) that for every open set A ⊇ [a1, a2] ⊇ {ω′(k)|k ∈
supp{ϕ}}, there is a constant C > 0 such that for all (t, x) ∈ R

2 with x
t

/∈ A

|φ(t, x)| � C(1 + |x| + |t |)−1.

The same considerations then deliver a second constant C ′ > 0 such that for all (t, x) ∈ R
2

with x
t

/∈ A ∣∣∣∣ ∂

∂x
φ(t, x)

∣∣∣∣ =
∣∣∣∣
∫

dk(ik) ei(kx−ω(k)t)ϕ(k)

∣∣∣∣ � C ′(1 + |x| + |t |)−1.

We choose without loss of generality A := ]
a1
2 , 2 · a2

[
. Then for a fixed τ ∈ R there is an

M > 0 such that for all t � τ and all x � M: x
t

/∈ A (set, e.g., M � 2a2τ ). Then, ∀x � M

and ∀t � τ

|j (t, x)| � |φ(t, x)|
∣∣∣∣ ∂

∂x
φ(t, x)

∣∣∣∣ � CC ′(1 + |x| + |t |)−2.

Therefore,

lim
M→∞

∣∣∣∣
∫ τ

−M

j (t,M) dt

∣∣∣∣ � lim
M→∞

∫ τ

−M

|j (t,M)| dt

� CC ′ lim
M→∞

∫ τ

−M

(1 + |M| + |t |)−2 dt

= CC ′ lim
M→∞

(
1 + sgn(τ )

1 + |M| − 1

1 + 2|M| − sgn(τ )

1 + |M| + |τ |
)

= 0. �

Now consider scattering solutions

�(t, x) =
∫ ∞

0
dkϕ(k)φ̃in(k; x) e−ik2t/2

with φ̃in(k; x) a solution to the corresponding Lippman–Schwinger equation and ϕ again
exclusively localized on the positive half-line. If the φ̃in(k; x) have the form

φ̃in(k; x) = T (k) eikx (A.4)

for x > R for some R > 0, and T ∈ C1(R) (e.g., the potential barrier), then the above line of
reasoning applies analogously. Clearly expression (A.4) is only valid for scattering potentials
with support bounded from the right.
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Appendix B. Proof of proposition 1.

By γx : R → R, t �→ γx(t), the integral curve of the Bohmian velocity vector field with initial
datum x is denoted. The intervals [at , bt ] := {x ∈ R/γx(t) ∈ [a, b]} represent the initial data
on configuration space, which are projected onto the interval [a, b] at time t along their integral
curves. Let xc ∈ R be the initial condition of the trajectory, which separates the transmitted
from the reflected ensemble. Then the transmission time (2) is

〈τT 〉 =
∫ ∞

xc

dξ |�(0, ξ)|2
∫ τf

τi

dtχ[a,b](γξ (t))

=
∫ τf

τi

dt

∫ ∞

xc

dξ |�(0, ξ)|2χ[at ,bt ](ξ)

=
∫

[τi ,τf ]
dt

∫
[at ,bt ]∩[xc,∞[

dξ |�(0, ξ)|2

=
∫

[τi ,τf ]
dt

∫
[a,b]

dξ |�(t, ξ)|2�(ξ − γxc
(t)).

Analogously, the reflection time reads

〈τR〉 =
∫

[τi ,τf ]
dt

∫
[a,b]

dξ |�(t, ξ)|2�(γxc
(t) − ξ).

Now from the right-hand side of (5) together with (3) and (7) we get∫ τf

τi

dt

[
min

{∫ ∞

a

|�(t, ξ)|2 dξ,

∫ ∞

γxc (t)

|�(t, ξ)|2 dξ

}

− min

{∫ ∞

b

|�(t, ξ)|2 dξ,

∫ ∞

γxc (t)

|�(t, ξ)|2 dξ

}]

=
∫ τf

τi

dt

[∫ ∞

max{a,γxc (t)}
|�(t, ξ)|2 dξ −

∫ ∞

max{b,γxc (t)}
|�(t, ξ)|2 dξ

]

=
∫ τf

τi

dt

∫ max{b,γxc (t)}

max{a,γxc (t)}
|�(t, ξ)|2 dξ

=
∫ τf

τi

dt

∫ b

a

|�(t, ξ)|2 · �(ξ − γxc
(t)) dξ = 〈τT 〉.

Analogously the right-hand side of (6) together with (3) and (7) becomes∫ τf

τi

dt

[
max

{∫ ∞

a

|�(t, ξ)|2 dξ,

∫ ∞

γxc (t)

|�(t, ξ)|2 dξ

}

− max

{∫ ∞

b

|�(t, ξ)|2 dξ,

∫ ∞

γxc (t)

|�(t, ξ)|2 dξ

}]

=
∫ τf

τi

dt

∫ min{b,γxc (t)}

min{a,γxc (t)}
|�(t, ξ)|2 dξ

=
∫ τf

τi

dt

∫ b

a

|�(t, ξ)|2 · �(γxc
(t) − ξ) dξ = 〈τR〉

which completes the proof.
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[14] Dürr D, Goldstein S and Zanghi N 1992 J. Stat. Phys. 67 843

Berndl K, Daumer M, Dürr D, Goldstein S and Zanghi N 1995 Nuovo Cimento 110B 737
[15] Stomphorst R G 2002 Phys. Lett. A 292 213
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